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Heterogeneous Responses to Price: Evidence from

Residential Water Consumers

Abstract

Public utilities may respond to demand or supply fluctuations by adjusting prices to

ration quantity. This approach’s efficacy and distributional impacts depend on house-

holds’ heterogeneous price sensitivity, which we estimate in a market for residential

water usage. Our household-level panel data features a large change in marginal water

prices and a novel measure of local hydrological stress. Contrary to prior research, we

find that heavy-usage households are more price sensitive than other households, and

price elasticity is largely invariant to household wealth. These findings suggest that

price-based rationing can be an effective tool to reduce water usage.
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Public or regulated utilities, such as water and electricity providers, often face demand

or supply fluctuations that make it difficult to satisfy all demand with a single year-round

price. Utilities may respond to these challenges with rationing, either through prices or ex-

plicit usage restrictions, or by increasing capacity. In recent years, price-based rationing has

gained popularity as a demand management tool (Cuthbert and Lemoine, 1996; Renwick and

Green, 2000; Newsham and Bowker, 2010; Kenney, 2011; Mayer, Hunter and Smith, 2018).

Price increases can be used to reduce quantity demanded to meet (perhaps reduced) quan-

tity available while allocating the utility’s product to consumers with the greatest marginal

benefit. The appeal of this approach may increase in the coming decades due to aging in-

frastructure, changes in climate and population, and the increasing cost of creating new ca-

pacity.1 In residential water markets, the impact of price-based rationing strategies depends

on how heterogeneous households respond to price changes. For these rationing strategies

to be successful, price increases should have a significant impact on heavy-usage households

that are likely to irrigate their lawns and gardens.2 Estimating heterogeneous responses to

price changes is also a necessary precursor for the analysis of distributional effects.

In this paper, we provide new insights into price-based rationing by analyzing a

detailed panel of households’ monthly water usage. The data allow us to describe how

households of different wealth and water usage patterns respond, potentially differently, to

variation in water prices, environmental conditions, and usage restrictions. Most notably, we

find that heavy-usage households, regardless of wealth, are significantly more price-sensitive

than other households, suggesting that prices may be an effective conservation tool in this

context.

There are three salient characteristics to our work. First, the data has several useful

features. We observe a transition from year-round uniform pricing to seasonal pricing in

which summer prices are about 40% above winter prices, and all marginal prices are constant

1Most of the electrical grid and over 30% of water utilities already operate at or near maximum capacity.
Experts have estimated that $1 trillion is required to maintain and expand service to meet demand over next
25 years (Fynn et al., 2007; American Society of Civil Engineers, 2017; American Water Works Association,
2019).

2Water supply networks are typically designed based on peak usage, which generally occurs during the
summer when up to 50% of all usage is for irrigation (Mayer et al., 1999; Balling, Gober and Jones, 2008;
Swamee and Sharma, 2008).
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in a household’s quantity consumed.3 To our knowledge, previous studies of household-

level water demand have not featured price shifts this large and as simple in structure.

Additionally, severe drought conditions during part of the sample period triggered the use

of command-and-control (CAC) policies that imposed restrictions on outdoor usage. This

provides an opportunity to also examine the effects of CAC policies. Finally, we use a

hydrological model, calibrated to the local area, to calculate a measure of local hydrological

stress (i.e., moisture available to lawns). This enables us to employ a single variable to

precisely measure conditions that stimulate outdoor water usage.4

Second, we characterize households’ usage heterogeneity in terms of temporal patterns

and levels over the course of a year. We use machine learning cluster analysis techniques

to group households according to similarity in their usage. These groupings, which we

call “usage profiles,” identify households that likely irrigate, making use of available data

without the need for costly monitoring of usage (DeOreo et al., 2011) or strong assumptions

to explicitly distinguish between indoor and outdoor usage.5 Furthermore, characterizing

households in terms of usage profiles is intuitively meaningful and of practical relevance.

Third, and perhaps most important, we allow for considerable heterogeneity in house-

hold behavior.6 In our estimation procedure, we partition households into six combinations

of usage profiles and wealth. For each combination, we determine price elasticities and

the effects of important control variables such as environmental conditions and usage re-

strictions. This formulation acknowledges that households with, say, similar wealth levels

but different usage profiles, may have different preferences for outdoor water usage, may

respond differently to environmental conditions and restrictions, and may exhibit different

3Seasonal pricing is also sometimes referred to as “peak-load” or “time-of-use” pricing. Previous studies
of residential water demand under seasonal pricing have focused on aggregate demand rather than household-
level demand (Renzetti, 1992; Lyman, 1992; Reynaud, 2010).

4Previous water demand studies vary in how they model environmental factors. See Arbués, Garcıa-
Valiñas and Mart́ınez-Espiñeira (2003) or House-Peters and Chang (2011) for reviews of the literature related
to environmental controls.

5In water demand studies, it is often difficult to distinguish between outdoor and indoor usage. One
common approach, pioneered by Howe and Linaweaver (1967), is to assume that a household’s outdoor usage
is equal to the difference between its usage during irrigation season and the “base usage” of winter months.

6Water demand studies generally have not addressed household-level heterogeneity; see reviews by House-
Peters and Chang (2011) and Fuente (2019). Exceptions include Renwick and Archibald (1998); Mansur and
Olmstead (2012); Klaiber et al. (2014); Wichman, Taylor and von Haefen (2016), and Buck et al. (2016).
Similar issues exist for residential energy demand; see Reiss and White (2005); Swan and Ugursal (2009);
Borenstein (2012) and Auffhammer and Rubin (2018).
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price sensitivities given the financial resources at their disposal.

Our estimates of water demand shed new light on the efficacy and distributional

consequences of price-based policies. In particular, we show that households that are most

likely to irrigate (i.e. heavy-usage households) are more price sensitive than other households,

and price sensitivity does not vary across wealth levels. For example, we find that wealthy

heavy-usage households have a price elasticity of -0.356, while wealthy light-usage households

have a price elasticity that is not statistically different from zero.7 Our findings on usage-level

heterogeneity are valuable because they suggest that price-based rationing can be an effective

tool for utilities that need to substantially reduce total water usage. Water utilities closely

monitor overall peak-season usage in making choices about capacity needs and non-price

usage-reduction strategies. By definition, heavy-usage households consume a large amount

of water, so a fixed percentage reduction in quantity, uniform across the population, would

reduce usage gallons by the most for heavy-usage households. The heterogeneity in price

elasticity that we document compounds this effect, as heavy-usage households reduce usage

by a greater percentage on top of a greater base.8

We complement our elasticity estimates with descriptive evidence of how households’

usage changes during the sample period. Of the households we match to the heaviest usage

profile prior to seasonal pricing, more than half eventually reduce their usage enough to more

closely resemble households in a lower usage profile. A much smaller share of households

increase usage substantially during the sample period. This provides insight into the extent

to which households make substantial changes in water usage following the introduction of

higher prices.

The previous literature on water demand’s price elasticity typically finds that house-

holds with higher outdoor water usage are less price sensitive than other households (Mansur

and Olmstead, 2012; Klaiber et al., 2014; Wichman, Taylor and von Haefen, 2016).9 Why

7These elasticity estimates are in the range of values that previous studies have found for areas with
similar environmental conditions. Elasticity estimates tend to be greater in the western United States
(Dalhuisen et al., 2003).

8One caveat to this argument is that water utility managers may be averse to implementing large price
shifts in non-drought periods in part due to concerns over “demand hardening” as this would decrease
potential amount of water reductions during periods of drought (Howe and Goemans, 2007).

9Although elasticity estimates for irrigating households vary, they are often statistically indistinguishable
from zero and, in some cases, positive.
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are our results different? One possible explanation is that our joint characterization of

households in terms of both wealth and usage profiles more effectively identifies households’

preferences for outdoor water usage and their price sensitivities. Indeed, we show that ignor-

ing this heterogeneity can lead to differences in price elasticity estimates. Another possible

explanation is that the pricing experiment that we observe features large price changes in an

otherwise simple pricing environment in which the marginal price of water does not vary with

quantity consumed. Prior studies generally have to account for marginal water prices that

increase with quantity (i.e., “increasing block prices”). This leads to two challenges. First,

households with greater demand face higher prices, which requires researchers to resolve

endogeneity concerns that can bias estimates for heavy usage households in the direction of

being less negative. Second, consumers may have difficulty understanding the schedule of

increasing prices (Shaffer, 2019). The simplicity of the pricing schedule in our data allows

us to largely avoid these issues.

1 Data

1.1 Water Usage Data

The Orange Water and Sewer Authority (OWASA) in Orange County, North Carolina pro-

vided us with monthly water usage and rate data from October 1999 through September 2005

for single-family residential properties. We match this data with each property’s parcel-level

characteristics using Orange County Land Records’ geographic information system. These

characteristics include lot size, square footage, year built, assessed value of the home in 2000,

and the Census Block Group.10 During the sample period, OWASA staff recorded usage from

household water meters approximately monthly, with different households’ usage recorded

on different days of the month. While households’ billing period lengths and time-of-month

vary in practice, there is no systematic relationship between bill timing and water usage.

We define monthly usage for each household in terms of biling “read periods.” In recording

households’ usage data, OWASA truncates to the nearest thousand gallons the total quantity

10In OWASA’s service area there are 45 Block Groups which contain, on average, about 190 households
each.
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of water used during a read period.11 Usage above a truncation point carries-over to the

next read period, which effectively delays payment rather than allowing some usage to be

unbilled entirely.

In this study, we focus on single family customers who did not change premises

during the study period. To prepare the sample we use for empirical analysis, we remove

observations that may be incomplete or contain errors. First, we eliminate households that,

despite OWASA’s billing designation, may not be single-family households.12 From the

remaining sample of 8,501 customers, we drop households with usage data that begins later

than October 1st, 1999 or ends earlier than October 1st, 2005, reducing our sample to 4825

customers. This insures that we observe all households for more than two years prior to

OWASA implementing seasonal pricing in May 2002. We eliminate outliers by dropping

households with monthly usage values that ever exceed the 99.9th percentile of usage; some

of these extreme outliers are due to meter misreads or catastrophic leaks. We also drop

households with zero-usage readings in 2+ consecutive periods or 12+ periods in total,

in order to exclude households with frequent absences due to travel or intermittent rental

activity.13 Our final sample, summarized in Table 1, contains 4,455 households, which

account for 70% of all household-month observations in the initial sample.

1.2 Water Prices

OWASA is among the first water utilities to use prices as part of a broader strategy to

manage demand during non-drought periods. On May 1st 2002, OWASA replaced uniform

year-round prices with seasonal prices that are higher in the summer.14 The decision to adopt

seasonal pricing was part of a longer-term plan to manage water resources and not in response

to a particular event. OWASA sets the price schedule each year to cover its yearly expenses

11In our empirical analysis, we treat monthly usage as a continuous variable so that we are able to perform
estimation using standard fixed effects methods.

12For example, we eliminate customers with multiple location identifiers as they may represent households
that own multiple homes or properties managed by rental agencies. We also eliminate customers whose land
record information is inconsistent with a single-family property.

13A zero-usage reading may also be due to meter rounding for very low usage amounts, or it could indicate
a water shutoff due to non-payment. Our estimation results are robust to different sample construction rules
related to missing readings, including dropping households with any zero-usage months.

14In October 2007, OWASA transitioned to a different pricing schedule in which marginal prices increase
with usage.
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for the residential sector as a whole. Similar to many utilities, OWASA charges households

a combination of volumetric and fixed fees. In each month, the volumetric portion of the bill

includes separate per-unit charges for both water and sewer services. Because households

are billed for both services on the same bill and in the same quantity units, the effective

marginal water price is the combined price for water and sewer services.

In Figure 1, we show the nominal marginal prices per thousand gallons (KGals) from

October 1999 to October 2005. Prior to 2002, price changes were limited to small increases

on October 1st of each year. The introduction of seasonal prices, which we refer to as the

treatment, began in May 2002. This pricing scheme features marginal prices that are 40%

greater during summer months (May-September) relative to the rest of the year. Water

prices during non-summer months are largely unchanged with the introduction of seasonal

prices. Fixed fees and per-gallon sewer charges remained constant throughout the year.15 In

our empirical analysis, we convert all prices to January 1999 dollars using the seasonally-

adjusted U.S. city average monthly consumer price index (CPI) from the U.S. Bureau of

Labor Statistics.

1.3 Command-and-Control Restrictions

Approximately two months after the implementation of seasonal pricing in 2002, drought

conditions led to falling reservoir levels, triggering the use of CAC restrictions, indicated with

shading in Figure 1. CAC restrictions target outdoor water usage to encourage conservation.

These restrictions are determined by reservoir levels and are independent of OWASA’s intro-

duction of seasonal prices. Violations of CAC restrictions were considered misdemeanors and

enforced through fines by the local townships and Orange County. OWASA implemented

CAC restrictions in three stages, with stricter requirements imposed during each subsequent

stage. On July 11th, 2002, the first restriction, Stage 1, was implemented, restricting irri-

gation of lawns, gardens, trees, or shrubs to three days out of each week. Approximately

15Marginal rates displayed in Figure 1 are applicable to 94% of customers. Of the 4,455 customers in the
sample, two customers have dedicated irrigation equipment and are charged an additional monthly marginal
charge of approximately $2.08/KGal for irrigation use. Additionally, 245 customers are charged for water
services but not sewer. The average monthly fixed fee during the sample period is approximately $13, and
the average monthly volumetric charge is about $32.
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Figure 1: Seasonal Prices and CAC Restrictions

Notes: Prices are nominal US dollars. CAC restrictions were imposed from July 11th 2002
through June 2003. The dip in the marginal price observed in October 2002 was due to a brief
administrative error.

one month later, the second restriction, Stage 2, was implemented, further restricting irri-

gation to only one day a week. Two weeks after the implementation of Stage 2, OWASA

implemented water supply Emergency restrictions as reservoir levels continued to fall.16 This

restriction prohibited the use of outdoor water for any purposes other than fire suppression

or necessary emergency activities. OWASA began the process of lifting CAC restrictions

after heavy rains in October 2002 ended the drought. Definitions of each CAC restriction

and a timeline of their implementation are in Online Appendix C.

Following the 2002 drought, OWASA introduced new usage guidelines to encourage

conservation. These guidelines encouraged the use of reclaimed or harvested water, the

installation of water-saving fixtures, and reductions in some outdoor watering activity. The

guidelines are similar to OWASA’s Stage 1 restrictions, but they were less widely publicized

16At the time, OWASA was concerned that households were responding to anticipated restrictions by
increasing watering before the new restrictions went into effect.
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and were in effect while conservation concerns were less salient in the market.17

1.4 Usage Profiles and Wealth

We use Ward’s agglomerative hierarchical clustering algorithm (Ward, 1963) to identify

yearly usage patterns during October 1999-September 2001, the two pre-treatment years that

feature constant within-year prices and small price changes between years. We define a year’s

usage to start on October 1, when OWASA implemented price changes. For each household in

our balanced panel, we have two October-to-September sequences of monthly pre-treatment

usage.18 We pool the sequences of all households and years, and then we allow the clustering

algorithm to partition the sequences into three groups – our usage profiles – that satisfy the

algorithm’s standards for within-group similarly. Allowing additional profiles did not add

clear value for our empirical approach. As a practical matter, we need the profiles to capture

enough households so that they can be further divided by other household characteristics

(i.e. wealth).19 We illustrate the usage profiles – which we refer to as Heavy, Moderate, and

Light – in Figure 2, where we show the average monthly usage for members of each profile.20

The usage profiles are instructive in describing differences in how households use water

over the course of the year and capture household characteristics that we do not observe

directly, such as the number of people in the household or preferences for outdoor water use.

They intuitively describe annual usage patterns, conforming with informal classifications of

residential water usage. The timing and magnitude of water usage of the Heavy profile,

for example, is consistent with lawn care. In particular, the large quantities of water usage

during peak summer months suggests outdoor irrigation, and the significant amount of usage

late in the fall suggests watering of re-seeded lawns in preparation for the following summer.

Conversely, the Light profile reflects consistently low water usage month-to-month, indicative

17The guidelines also included substantial allowances for outdoor watering of new grass and plantings,
which would allow households to irrigate year-round without restriction if they put down grass seed in the
spring and fall.

18We convert usage amounts from read periods to calendar months under the assumption that per-day
usage is constant within a read period.

19When we experimented with adding a fourth usage profile, we found that it did not add information
about the timing of water usage within the year, just its level.

20Ward’s agglomerative hierarchical clustering method groups together time series that are closest to each
other in multivariate Euclidean space. The method’s agglomerative coefficient, a measure of the clustering
structure, is 0.993 in our data, indicating a strong clustering structure.
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Figure 2: Usage Profiles from Clustering

of no outdoor water usage. Finally, the Moderate profile reflects usage in between the two

other profiles. Relative to the Light profile, the Moderate profile has higher usage during the

winter and small but distinct peaks during the summer and fall, likely reflecting occasional

outdoor water use. In the discussion below we emphasize differences in overall usage volume

across profiles, but the ordering of profiles would be the same if we were to emphasize

differences in usage seasonality, i.e. how much more water is used in summer relative to

winter.

As part of the profile-creation process, each year of a household’s October 1999-

September 2001 activity is assigned to one of the usage profiles. For our main elasticity

analysis, we assign each households a type – Heavy, Moderate, or Light usage – based on which

profile contains the household’s usage during October 2000 to September 2001, immediately

before seasonal pricing’s introduction. As a robustness check, we redo all analyses using
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October 1999 to September 2000 usage to match households to profiles, and we find that

our results are not sensitive to the choice of pre-treatment year. These results are provided

in Online Appendix D.

We follow the convention in the literature and define household wealth using assessed

value of the home (Jones and Morris, 1984; Dandy, Nguyen and Davies, 1997; Arbúes, Bar-

beran and Villanua, 2004).21 Specifically, we create an indicator for relative wealth based

on the median assessed home value ($192,647) in the area of study in 2000.22 We iden-

tify a household as High wealth if the home value is above the median, and Low wealth

otherwise. Columns 2 and 3 of Table 1 summarize parcel-level household characteristics by

wealth level. As indicated by the average house value for lower-wealth households ($131,369),

OWASA’s service area is generally wealthier than the rest of North Carolina (median home

value $108,300) and the United States ($119,600).

As shown in Table 1, there is a positive correlation between wealth and usage, con-

sistent with the literature (Dalhuisen et al., 2003; Harlan et al., 2009). However, 25% of the

households with Heavy usage profiles have lower-than-median home values. In addition, the

set of households with higher-than-median home values and Heavy usage profiles represents

only 21% of wealthier households.

1.5 Environmental Conditions

Environmental conditions are important factors that drive demand for outdoor water usage

such as lawn irrigation. The standard approach has been to account for this with an ad hoc

collection of weather variables. By contrast, we introduce a novel measure based on hydro-

logical stress. This measure more directly captures the water needs of a household’s lawn.

We use a hydrology model to account for how water moves through the hydrological cycle,

while also accounting for land use and vegetation cover patterns. Specifically, we introduce

21Studies that have explored how price responses interact with wealth measures have used assessed home
values or income as a proxy. Wealth may be more appropriate than income in understanding a household’s
ability to pays its bills, due to former capturing savings, access to credit, and other financial resources (Meyer
and Sullivan, 2003).

22This approach is consistent with previous work. For example, Olmstead and Mansur (2012) define
households with incomes and lot sizes both above the sample medians as “rich, big lot” household and those
with incomes and lot sizes both below the medians are categorized as “poor, small lot.”
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Table 1: Usage and Parcel Characteristics

All Wealth Level Usage Profile

Low High Light Moderate Heavy

Usage (KGals) 5.63 4.65 6.49 3.25 5.93 9.78
(4.31) (3.30) (4.87) (2.22) (3.45) (6.40)

House size (sq. ft.) 2346 1700 2910 1923 2444 2923
(878.20) (494.57) (740.38) (748.10) (792.35) (983.17)

Number of bedrooms 3.56 3.14 3.93 3.24 3.64 3.97
(0.96) (0.85) (0.91) (0.91) (0.92) (1.02)

Number of bathrooms 2.55 2.04 3.00 2.19 2.64 3.01
(0.85) (0.66) (0.75) (0.80) (0.76) (0.95)

Yard size (acres) 0.44 0.35 0.51 0.39 0.45 0.50
(0.34) (0.26) (0.39) (0.33) (0.35) (0.34)

House value (1000 USD) 206.65 131.37 272.31 162.93 216.27 268.20
(98.18) (36.68) (87.28) (79.08) (90.24) (117.67)

Year built 1975 1969 1981 1972 1977 1979
(18) (17) (17) (18) (18) (17)

Total households (N) 4455 2080 2375 1481 2301 673
High wealth households (N) 478 1389 508

Note: Values are means and standard deviations in parenthesis.

an index derived from a spatially-explicit eco-hydrological model known as Regional Hydro-

Ecologic Simulation (RHESSys) (Tague and Band, 2004; Gao et al., 2018; Lin et al., 2019) to

summarize the exogenous factors that determine lawn and soil dryness. This approach builds

on previous hydrological research that has found that calculations of soil water deficits are

better than weather variables (which mostly capture atmospheric conditions) at identifying

periods in which plants are likely to be water-stressed in agricultural settings (Yao, 1974;

Torres, Lollato and Ochsner, 2013).

We construct the index in two steps. First, RHESSys produces estimates of actual

evapotranspiration and potential evaporation, which are measurements of the amount of

moisture transferred from lawns to the atmosphere. The two measurements differ in that

actual evapotranspiration is a conditional measure, limited by the amount of soil moisture

currently available, whereas potential evapotranspiration is an unconditional measure that

reflects the maximum amount of moisture that could theoretically be transferred. To produce

these estimates, the model combines a high-resolution landcover database (NLCD, 2001;

12



Pickard et al., 2015) with other model inputs (e.g. precipitation, soil water potential, air

temperature, solar radiation) to model spatial and temporal dynamics of soil moisture. We

calibrate and validate the model using United States Geological Survey gages to derive

estimates of soil moisture specific to lawns. In the second step, we use the resulting estimates

of actual and potential evapotranspiration to produce a “water stress” index, WS ∈ [0, 1],

that captures soil conditions for each Census Block Group in OWASA’s service area. A

value of WS = 0 indicates minimally stressed (i.e., wet) conditions, and WS = 1 indicates

maximally stressed (dry) conditions. In Appendix A, we provide further details on water

stress as well as an illustration of its temporal and spatial variation. In our estimation

models, we also include a measure of average temperature to capture demand for seasonal

recreational water uses (e.g. water used to fill swimming pools) that water stress does not

capture.

The use of water stress presumes that households water their lawns when their plants

are stressed. It is possible, however, that households respond to weather variables instead.

We also collect weather data and construct environmental controls similar to those typically

used in the literature. In Online Appendix E, we compare our results to estimates obtained

when controlling for environmental factors using ad hoc collections of weather variables. We

show that commonly used collections of weather variables generally produce smaller estimates

of price sensitivity among wealthier households with Heavy and Moderate usage profiles. We

also show that is possible for collections of several weather variables to approximate our

results when we use water stress. The advantage of using water stress is that it summarizes

environmental factors in a single variable. This allows us to estimate differential responses

to environmental factors in a parsimonious way.

2 Water Demand Estimation

2.1 Empirical Specification

We estimate a demand function for water. In considering the demand model’s components

and parameterization, it is useful to consider a household’s constrained optimization problem.

13



We assume that households are heterogeneous in two dimensions: their taste for landscaping

and their budget constraints. In our empirical model, we allow usage profiles and house

values, respectively, to proxy for these sources of heterogeneity. In addition to the utility

from landscaping and the budget constraint, a household must consider the “technology” that

produces healthy landscaping. This technology requires water as an input, and in general

the need for watering or irrigation is greater during hot, dry weather. For a given water

price, households with different landscaping utility and budget constraints will have different

water usage throughout the year. As the price of water increases, households with different

landscaping tastes and budget constraints may respond differently to this price variation.

This motivates one characteristic of our empirical specification, which allows a different price

elasticity term for each usage-wealth combination. Similar to the heterogeneous effect of

prices, when changes in environmental conditions affect water’s productivity in maintaining

a lush lawn, households of different tastes or wealth may respond differently in their water

choices. This motivates a second characteristic of our empirical specification, which allows

a different response to water stress for each usage-wealth combination. Finally, households

may vary in how they view CAC restrictions, which some may see as hard limits on the

total amount of outdoor water to be used, while others interpret them as increasing water’s

price through possible fines or social pressures. Our demand model allows households with

different wealth and usage profiles to have different responses to CAC restrictions.

We assume that household i’s demand for water during read period t is a function

of water’s contemporaneous marginal price.23 To account for demand heterogeneity, the

model’s parameters vary with a household’s usage profile, u ∈ {Heavy,Moderate,Light}, and

its wealth, w ∈ {High, Low}. For each household and combination of u and w, we define a

set of indicator variables, τiuw, that are equal to one if household i has usage profile u and

23Alternative assumptions, used elsewhere in the literature, include the assumption that households re-
spond to lagged prices (because they believe that prices printed in recently-received bills also apply to the
current period) or they respond at the margin to an average of fixed and marginal prices (because the true
marginal prices are difficult to decipher).
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wealth level w, and zero otherwise. We specify demand as:

qit =
∑
u

∑
w

τiuwβuwpt +
∑
u

∑
w

∑
k

τiuwφuwkxitk +
∑
u

∑
w

τiuwθuwZit + ηi + εit, (1)

The dependent variable, qit, is the natural log of the total quantity of water demanded by

household i during read period t. Our analysis drops observations with zero consumption;

this affects about 0.87% of all observations, and therefore has only a minor impact on our

estimates. The variable pt is the natural log of the marginal price in effect during read period

t. The coefficient βuw therefore represents price elasticity for wealth level w and usage profile

u.

The scalar xitk records CAC restrictions, k ∈ {Stage 1, Stage 2, Emergency}, that

were implemented during the drought. The restrictions are mutually exclusive, and we record

in xitk the share of days restriction k was in place during read period t for household i. The

coefficient φuwk captures the change in usage due to CAC restriction k for households with

wealth level w and usage profile u. Responses to CAC policies are identified, in part, with

variation across households in exposure to restrictions per read period, due to asynchronous

meter-reading and billing.

The vector Zit contains controls for other factors that influence water demand during

each read period. These include Census Block Group level water stress, average temperature,

and the natural log of number of days in each household’s read period t. We standardize the

values of both Census Block Group level water stress and average temperature, demeaning

then normalizing them by their standard deviations, to put them on the same scale. Zit

also contains variables to account for intra- and interyear usage trends. We capture in-

trayear trends with a sixth-order polynomial of the week number (values 1 through 52) for

the day halfway through a read period.24 We estimate separate intrayear trend coefficients

for each usage-wealth type. Estimating the trends separately allows different households to

have different baseline seasonal usage trends, and therefore is an important component of

our measurement of the different impacts of seasonal pricing across usage-wealth groups. We

capture interyear trends with a linear trend variable and the interaction of this trend variable

24Asynchronous meter reading and billing across households implies that we see considerable cross-
household variation in average week number.
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with an indicator for summer months (May-September). Both types of trend variables are

primarily identified by intra- and interyear changes in usage prior to seasonal pricing’s in-

troduction in May 2002.25 The intrayear trend captures seasonal variation in water demand,

while the interyear trend could be influenced by the gradual installation of modern low-usage

appliances or changes in gardening and landscaping choices unrelated to water prices. Fi-

nally, we include an indicator variable that is equal to one beginning in May 2002 to account

for differences in attitudes about water usage and conservation during the seasonal pricing

regime.

We leverage the panel nature of the data to control for time-invariant unobserved

household characteristics that may be correlated with water demand, such as the age of the

home’s water fixtures or appliances, its numbers of bedrooms and bathrooms, and its number

of occupants and their average taste for water usage. These characteristics are absorbed by

the fixed effect ηi. Lastly, εit is an error term that captures unobservable demand shocks

that households experience during individual read periods. In estimating equation (1), we

cluster standard errors at the household level.

2.2 Price and Usage Variation over Time

To estimate the price elasticity coefficients in equation (1), we rely on temporal price vari-

ation due to the introduction of seasonal pricing. During the first 2.5 years of our sample,

households faced fairly stable water prices year-round, and for the sample’s remaining 3.4

years households’ summer water prices were considerably higher and winter prices declined

modestly relative to the pre-treatment nominal price trend (see Figure 1). We observe

household-level data in one water market only, so we do not have the opportunity to com-

pare treated households (facing seasonal pricing) to untreated households at the same time.

We can, however, conduct a simple comparative analysis of per-capita usage between

OWASA and the neighboring city of Durham NC to investigate whether OWASA’s intro-

duction of seasonal prices coincided with region-wide usage changes that might confound our

elasticity estimates. The Durham service area is adjacent to OWASA, and moreover, Durham

25Because the interyear trend terms and household usage types are both identified by usage prior to
seasonal pricing, we do not allow the trend coefficients to vary by household type.
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did not have major pricing changes during the sample period. If there was a change in water

usage practices in the region, we would expect to see it affect usage in both Durham’s and

OWASA’s service areas.26 In Figure 3, we display monthly per-capita residential water usage

in both areas. For comparability to Durham, the displayed OWASA time series is not lim-

ited to single-family households, as in our estimation sample, but this does not qualitatively

affect the OWASA data. Two-thirds of Durham residential water accounts are associated

with single-family households, while about 80% of OWASA accounts are single-family homes.

We normalize each data series using its respective average prior to OWASA’s introduction

of seasonal pricing. This equalizes mean usage, which is greater in OWASA’s service area,

yet reflects how the two usage series differ in terms of summer and winter usage.27 Figure 3

shows that the normalized per-capita usage in OWASA and Durham are very similar in their

seasonality and modest year-to-year changes up until May 2002. After OWASA introduced

seasonal pricing, however, OWASA usage is consistently below Durham. For the first year of

seasonal pricing, this difference includes OWASA’s CAC restrictions in addition to increased

summer water prices. Throughout the seasonal pricing regime, OWASA’s water usage varies

less between summer and winter, as we expect with seasonal prices. This suggests that our

primary identification strategy – to examine within-household usage changes by OWASA

customers – can provide credible estimates of demand elasticities.

2.3 Elasticity Estimates

We show in Figures 4 - 6 collections of coefficients and confidence intervals from our estimated

demand model. We report the full set of estimates in Appendix B’s Table B1, Table B2,

and Figure B1. Starting with the price elasticity estimates shown in Figure 4, we find

that there are significant differences across usage profiles. Among high-wealth households,

those with Heavy usage have a price elasticity of -0.356, while high-wealth households with

Moderate usage have a price elasticity of -0.117, and Light usage households have a price

26While this comparison of locations with and without a policy change suggests an opportunity for a
difference-in-differences analysis, we do not have data from Durham on household characteristics or their
water usage, so we are unable to perform our estimation of water demand heterogeneity with a difference-
in-differences research design.

27Usage differences reflect, in part, differences in income (55% greater in OWASA) and home value (76%
greater in OWASA).
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Figure 3: Water Usage in Chapel Hill and Durham

Note: The graph shows the per-capita monthly usage by all residential customers regardless of
residence type in Durham (solid line) and OWASA (dashed line). Each data series is normalized
using its respective average prior to OWASA’s introduction of seasonal pricing.

elasticity that is not statistically different from zero. Conditional on usage profile, the

price elasticities of low-wealth households are essentially the same as those of high-wealth

households.28 In contrast, previous studies that have found that prices induce a larger

reduction in demand among poorer households (Renwick and Archibald, 1998; Mansur and

Olmstead, 2012; Wichman, Taylor and von Haefen, 2016).

Our findings offer support for using price-based rationing to reduce total water us-

age. Although it may initially seem counterintuitive that heavy-usage households can both

consume more water and have a greater price elasticity, this can certainly be the case.29

Furthermore, demand functions with this property are consistent with a theoretical model

in which all households have an inelastic demand for indoor usage and some households have

additional demand for outdoor use. Of course, our data only allows us to estimate a single

elasticity. To further identify the indoor and outdoor elasticity separately, one would need

28We find the same qualitative pattern in elasticities if we limit the sample to the pairs of adjacent months
(April and May, and September and October) when OWASA switches between winter and summer prices
during the seasonal pricing regime.

29Consider demand functions Q = a(1 − P b) where a and b are positive constants. Let household A
have a = 1 and b = 1 and let household B have a = 3 and b = 1

2 . Then household B has greater quantity
demanded and greater price elasticity at any price ∈ (0, 1).
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Figure 4: Water Price Elasticities

Note: Geometric shapes are point estimates and lines are 95% confidence intervals.

meaningful variation within both summer and winter prices, not simply in summer prices as

we have in this study.

In Appendix B, we analyze the sensitivity of our price elasticity results under alter-

native approaches to the data. In Appendix Table B2 we consider different ways to account

for interyear trends in water usage. In particular, we estimate a model where we estimate

summer and non-summer trends in a separate step using only data prior to seasonal pricing,

as well as additional models that allow summer and non-summer trends to vary by household

wealth, by an indicator of relative lot size based on the median value, and by the interaction

of wealth and lot size indicators. Each model generates results that are qualitatively similar

to the results in Figure 4. The price elasticities of heavy-usage households are significantly

larger in magnitude than price elasticities of moderate-usage households, which in turn have

greater price sensitivity than light-usage households. In addition, we investigate the impact

of replacing the clustering algorithm’s grouping of households with simpler approaches that

separate households into terciles according to different aspects of their pre-treatment us-

age. The results from these models, shown in Appendix Table B3, are very similar to our

main results in Figure 4. In the same appendix table we show that our elasticity results are

unaffected when we replace our water stress variable with the well-known Palmer Drought

Severity Index (Palmer, 1965).
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Figure 5: Effect of Environmental Factors on Water Usage

Note: Point estimates (geometric shapes) are percentage change in water usage per standard
deviation increase in environmental factors. Lines are 95% confidence intervals.

An important feature of our estimation strategy is that we allow households to have

heterogeneous responses to environmental conditions. In Figure 5 we display our estimates of

how households of different usage-wealth types respond to variation in water stress and tem-

perature. Responses to water stress increase in wealth and usage, with high-wealth heavy-

usage households having significantly greater responses than all other usage and wealth types.

Light households, as expected, are relatively unresponsive to variation in environmental con-

ditions. Conditional on water stress, households’ responses to air temperature are near zero

for all usage and wealth types. This is consistent with our argument that our water stress

variable is an appropriate way to capture how households’ outdoor water demand responds

to variation in environmental conditions. If we omit water stress from the demand model,

we find that all household types increase water usage when air temperature increases.

To understand how our approach to heterogeneity supports our estimation of price

elasticities, consider the potential bias in price sensitivity that would follow from assum-

ing homogenous responses to environmental factors. With this restriction, we may under-

estimate heavy-usage households’ responses to hot and dry weather while over-estimating

light-usage households’ responses. Environmental stress occurs at the same time of year as
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increased prices, so uncaptured variation in weather responses may spill over to estimates of

price elasticities. In particular, if heavy-usage households’ weather-related increased usage

is not explained by their responses to summer weather conditions, then the model may at-

tempt to fit their behavior through biased price sensitivities that are too small in magnitude.

This source of bias could play a role in some previous studies’ findings of relatively inelastic

demand for households presumed to irrigate.30 Likewise, homogeneous responses to environ-

mental factors may ascribe too-strong weather responses to light-usage households with little

interest in outdoor water usage. When the restricted model predicts light-usage households

should moderately increase usage in response to summer weather (when the true responses

are closer to zero), the model may compensate by ascribing the absence of increased usage

to strong price sensitivity.

To test these conjectures, we turn off some of the sources of heterogeneity in equa-

tion (1) and re-estimate the model with simpler specifications. These results are shown in

Appendix Table B4. In Column A, we assume that households have identical responses to

water stress and air temperature, as well as identical intrayear usage patterns. We find that,

as expected, high-wealth households’ price elasticities are smaller in magnitude than in our

main results. In fact, the ordering of high-wealth households’ price elasticities is reversed

relative to Figure 4, and low-wealth households’ elasticities are roughly constant in usage.

If we additionally restrict households to have identical price elasticities within wealth, or

alternatively restrict households to have identical price elasticities within usage, we find that

high wealth and high usage households are the least price sensitive. See Columns B and C

of Appendix Table B4 for these results.

In Figure 6 we turn to the effects of CAC restrictions. The Stage 1 and Stage 2

restrictions had relatively modest impacts on water usage, and these effects are largely sim-

ilar across usage profiles and wealth.31 The Stage 2 restriction also generated fairly weak

responses by households in all groups; the weak response may have been influenced by an

30The same issues apply to settings with increasing-block pricing, a policy in which marginal prices rise
with usage. When households on increasing-block pricing respond to hot and dry weather by increasing
outdoor watering, their marginal prices rise.

31Percent changes are calculated from the OLS coefficients using the Halvorsen-Palmquist-Kennedy ap-
proach to interpreting indicator variable coefficients in semi-log specifications (Jan van Garderen and Shah,
2002).
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Figure 6: Effect of Command and Control Policies on Water Usage

Note: Point estimates (geometric shapes) are the percent change in water usage due to command
and control restrictions. Lines are 95% confidence intervals.

incentive to increase water usage in anticipation of the stricter Emergency restriction that

followed. Households’ responses to the Emergency restrictions were substantially larger than

to the other CAC policies. Heavy-usage high-wealth households, which is the group most

likely to engage in regular lawn irrigation, had the largest reductions in usage under Emer-

gency restrictions. Differences in responses to this restriction across usage-wealth groups

could be due to a variety factors, including pre-restriction water usage type and level, sen-

sitivities to fines and neighbors’ disapproval, and intrinsic motivations to obey guidelines.

While the Emergency restrictions, like seasonal prices, induce heavy-usage households to

reduce (likely) outdoor water usage, weaker restrictions appear less successful in generating

responses among heavy-usage households.

3 Additional Evidence on Usage Profiles

For the elasticity estimation conducted in Section 2, we grouped households into usage

profiles based on their activity prior to seasonal pricing. Though the results suggest that

heavy-usage households were most sensitive to price, the way in which these households
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reduced usage is unclear. In this section, we examine how households’ consumption may

transition away from their initial classification and begin to resemble other usage profiles

over the treatment period. This exercise provides supplementary information about the

effects of seasonal pricing on usage. This information is relevant to water utilities, which

are concerned with both price elasticities and peak-usage timing when setting policies for

reservoir management (e.g. Zeff and Characklis, 2013; Zeff et al., 2016). To implement this

analysis, we use the k-nearest neighbors algorithm to match a household’s usage in each year

to the Heavy, Moderate, or Light profile. For the year immediately before seasonal pricing,

the matching algorithm almost always (greater than 97 percent of the time) assigns the

household to the group of usage sequences to which it was assigned in the initial clustering

procedure.

We start by providing in Table 2 the fractions of households in each usage profile over

time. For example, Panel A shows that, in the first year of the sample, 34% of households

had Light usage profiles. This fraction stayed relatively constant for two more years before

increasing to about 45%. Overall, the fractions are generally stable in the sample’s first

couple of years, move around in the middle two “transition years” – October 2001-September

2002 and October 2002-September 2003 – and then are generally stable at a new level in

the sample’s final years. These patterns suggest a qualitative shift in usage following the

introduction of seasonal pricing. Panels B and C show that a similar effect holds within both

high- and low-wealth households.

To shed additional light on the reduction in usage after the implementation of seasonal

pricing, we report in Table 3 changes in household-level usage profiles relative to usage

profiles in the year prior to treatment (October 2000-September 2001). We describe how to

understand the entries in this table using the transitions of households with Heavy usage

profiles. As shown in the “Oct00-Sep01” row, 673 households were classified as having a

Heavy profile during October 2000-September 2001. Of these households in the “Oct00-

Sep01” row, 75% were in that same profile the following year (“Oct 01-Sep02”), while 24%

moved to Moderate, and 1% moved to Light. The next row, labeled “Oct02-Sep03,” shows

that 56% of initially heavy-usage households in “Oct00-Sep01” row were in the Moderate

profile during the second year of seasonal pricing. Among households identified as Moderate

23



Table 2: Usage Profile Shares

Light Moderate Heavy

Panel A All Households (N=4455)

Oct99-Sep00 0.34 0.49 0.17
Oct00-Sep01 0.33 0.52 0.15
Oct01-Sep02 0.34 0.49 0.17
Oct02-Sep03 0.49 0.44 0.07
Oct03-Sep04 0.45 0.44 0.10
Oct04-Sep05 0.45 0.45 0.10

Panel B Lower Wealth Households (N=2080)

Oct99-Sep00 0.48 0.43 0.09
Oct00-Sep01 0.48 0.44 0.08
Oct01-Sep02 0.49 0.43 0.08
Oct02-Sep03 0.61 0.35 0.04
Oct03-Sep04 0.59 0.36 0.05
Oct04-Sep05 0.59 0.37 0.04

Panel C Higher Wealth Households (N=2375)

Oct99-Sep00 0.21 0.55 0.24
Oct00-Sep01 0.20 0.58 0.21
Oct01-Sep02 0.21 0.54 0.25
Oct02-Sep03 0.37 0.52 0.11
Oct03-Sep04 0.34 0.51 0.15
Oct04-Sep05 0.33 0.52 0.15

prior to seasonal pricing, many more reduced their usage to Light than increased to Heavy.

Similarly, relatively few households initially identified as Light moved to a heavier usage

profile. We provide a table of transitions by wealth in Online Appendix F.

When households move between adjacent usage categories, the magnitude of their

usage changes might be large or small. In particular, small changes can induce transitions

across a margin yet not represent substantial usage changes at all. We investigate this

issue by examining the magnitudes of usage changes by households that have transitions

across usage profiles. The average water usage by a Heavy usage household is 11.37 KGal

per month immediately before seasonal pricing, with an interquartile range of 9.43-12.51

KGals. Households that switched from the Heavy to Moderate profile during consecutive

years averaged 10.46 Kgals during the Heavy year and 3.06 KGals less after changing to
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Table 3: Transitions in Usage Profiles

Oct00-Sep01 Light (N=1481) Moderate (N=2301) Heavy (N=673)

L M H L M H L M H

Oct01-Sep02 0.82 0.17 0.00 0.12 0.76 0.11 0.01 0.24 0.75
Oct02-Sep03 0.89 0.11 0.00 0.35 0.62 0.03 0.05 0.56 0.39
Oct03-Sep04 0.86 0.13 0.01 0.31 0.63 0.06 0.04 0.49 0.46
Oct04-Sep05 0.85 0.14 0.01 0.31 0.64 0.06 0.06 0.49 0.44

Note: The table above shows the proportion of users of in each initial usage profile whose
consumption best matches each profile in the subsequent four years.

Moderate, a substantial reduction in water usage. Movement across non-adjacent profiles

more obviously coincide with large reductions in water usage. In particular, households that

switched from Heavy to Light used 10.8 KGals during the Heavy year and 7.16 KGals less

once in the Light usage profile.

The information in Table 3 corroborates the finding that there appears to have been

a permanent downward shift in usage for many households. It also provides further insight

into the overall impact that seasonal pricing had on usage. In particular, the adoption of

seasonal pricing was effective at reducing usage during peak summer months, resulting in

observable decreases in Heavy usage profiles among both high- and low-wealth households.

4 Conclusion

Water utilities are increasingly using price-based demand management strategies as an al-

ternative to infrastructure expansion. Evaluating these strategies requires an understanding

of the consequences of price increases. In this study, we estimate demand for residential

water using household-level panel data. Our data allows us to estimate elasticities that

vary by both household wealth and usage profile. We find relatively large price sensitivity

among households that are likely to irrigate their lawns, while much of the previous liter-

ature, which largely uses data from settings with increasing-block pricing (IBP), finds that

households with heavy outdoor water usage are relatively price-inelastic.

There are several potential interpretations of this difference in results. One interpre-

tation is that uncovering elasticity in IBP settings is difficult, and differences in results are
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due to imprecision or bias in previous elasticity estimates. If this is the case, then readers

may view our elasticity estimates as recovering a better estimate of the underlying price

sensitivity parameters that consumers bring into any water usage choice, regardless of the

price structure. This suggests that raising prices for heavy usage in IBP may have a strong

effect on outdoor usage, despite some previous evidence to the contrary. This interpreta-

tion is contingent on households paying sufficient attention to their marginal water price,

for which there is conflicting evidence. This suggests a second interpretation of our results.

Heavy-usage households may appear to be price-insensitive under IBP because they misin-

terpret their water price schedules, perhaps acting as if a lower price (e.g. the average of all

marginal prices) applies to their usage. If households’ difficulty in interpreting IBP is viewed

as a constraint on real-world water pricing policy, then our results suggest that water utilities

that seek to lower outdoor usage may consider using simpler seasonal pricing in place of IBP,

or raising the prices of all steps in an IBP scheme rather than just the heavy-usage ones. A

third interpretation, of course, is that the differences in results are simply due to differences

in the populations studied. There are good reasons to support each of these interpretations

(individually or in combination), and we leave it to future work to provide more evidence on

which ones are appropriate.

Our findings have implications for several areas of related research. First, from the

perspective of a water utility, the relationship between price and quantity is an important

consideration because utilities tend to recoup a large percentage of their fixed costs from

variable charges (Beecher, 2010). Second, water utilities may be concerned with the welfare

impacts of higher prices on various customer classes. In contrast to previous findings, we

show that poorer households have similar demand elasticities to wealthier households. This

provides the basis for future research exploring welfare implications of price changes and the

affordability of water services.
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Appendices

A Deriving the Water Stress Index

Previous studies of water demand have taken a variety of approaches in modeling rele-

vant environmental factors. The most common controls used are measures of precipitation

(Moncur, 1987; Renwick and Archibald, 1998; Mart́ınez-Espiñeira and Nauges, 2004; Roseta-

Palma et al., 2013) or a combination of precipitation and temperature measures (e.g. Taylor,

McKean and Young, 2004; Gaudin, 2006; Wichman, 2017). Some studies have instead relied

on measures of evapotranspiration (e.g. Hewitt and Hanemann, 1995; Dandy, Nguyen and

Davies, 1997; Olmstead, Hanemann and Stavins, 2005). Many additional measures – such

as wind speed, minutes of sunshine, and temperature differences relative to some threshold

– have also been used.32 Some recent demand estimation studies in western U.S. have made

use of satellite imagery data to calculate a Normalized Difference Vegetation Index (NDVI),

a measure of landscape “greenness” to represent demand (e.g. Wolak, 2016; Brent, 2016;

Clarke, Colby and Thompson, 2017).

In contrast to these approaches, we create a water stress index using the RHESSys

model.33 The advantage of this model is that it uses elements of ecosystem models (e.g.

BIOME-BGC (Running and Hunt Jr, 1993) and CENTURY (Parton et al., 1987)) to model

spatial and temporal dynamics of soil moisture available to lawns (the top 20 cm of soil).

To do this, we first provide the RHESSys model with highly detailed spatial information

to partition the landscape into forest, roads, rooftops, impervious surfaces, wetlands, pas-

ture/agriculture lands, and lawns.34 We then model surface and subsurface water flowpaths

over the watershed. Outputs of RHESSys relevant to this study includes catchment-scaled

32Though typically weather variables are included as linear terms, Maidment and Miaou (1986) argue
that the effects of weather may be nonlinear, as the effects of rainfall, for example, diminish over time.
Mart́ınez-Espiñeira (2002) argues that the number of rainy days can have a psychological impact therefore
can have a greater impact on water demand.

33RHESSys has been widely used to model spatially distributed soil moisture, evapotranspiration, surface
and subsurface runoff, carbon and nitrogen cycling in different biomes and under different climate and land-
use change scenarios (Band et al., 1993; Hwang, Band and Hales, 2009; Miles and Band, 2015; Bart, Tague
and Moritz, 2016; Hanan, Tague and Schimel, 2017; Gao et al., 2018; Lin et al., 2019).

34We use land use land cover information at a resolution of 1 meter from the Environmental Protection
Agency’s EnviroAtlas (Pickard et al., 2015).
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streamflow, patch-scaled (30 m) soil moisture, and patch-scaled vegetation water demand

and evapotranspiration.

Using data from USGS gages in the OWASA service area, we calibrate parameters

related to hydrologic conductivity (water transport rate in soil columns) in our model using

information for 2000-2004 and validate the model using information for 2007-2009.35 We

conduct Monte Carlo simulations to generate predictions of streamflow/catchment runoff

using these parameters. These predictions are then compared to the observed streamflow in

order to find the set of conductivity parameters that best represents the area under study.

Model fit is evaluated using the weekly Nash–Sutcliffe model efficiency coefficient (NSE),

both logged and in levels.36 For each of these simulations, we summarize model outputs as

an index, given by WS = 1 − ξa/ξp, that captures the lack of moisture available to lawns.

In this equation, ξa represents actual evapotranspiration (ET) and ξp represents potential

evapotranspiration (PET). We create two versions of the variable at different spatial scales: a

Census Block Group specific measure (used in the main analysis) and another at the regional

(watershed) level. Figure A1 graphically represents the spatial and temporal variation in

the Census Block Group water stress variable.

Previous work in the hydrology literature has documented high spatial variation in

soil moisture even over small spatial scales (Tague et al., 2010; Rosenbaum et al., 2012). In

the context of the area we study, there are two potential drivers. First, topography plays

an important role. Specifically, differences in elevation has a direct impact on flow paths.

Second, (sub)urbanized landscapes also alter flow paths. For instance, roads, sidewalks,

buildings, and other impervious surfaces can block off infiltration. Fragmented forests and

patchy lawns and gardens can affect vegetation water needs over the landscape.

35We calibrate the model using low streamflow conditions due to drought conditions during 2001-02 and
high streamflow that resulted from the extreme wet event in the latter part of 2002. Other time periods
provide information on “normal” streamflow conditions. We validate the hydrological model using 2007-2009,
a time period in which another drought occurred.

36Comparisons of predicted to observed streamflow require consideration of how predictions perform under
various flow events (high vs. low). The NSE coefficient in levels provides information on model fit for high
flow events whereas the log transformed NSE coefficient provides information on model fit for low flow events.

28



Figure A1: Water Stress
(a) Water Stress for Three Census Block Groups: 1999-2005

(b) Water Stress During June 2002 for all Census Block Groups

Notes: “Highest” refers to the block group with the highest average water stress during the
period, “Median” the block group with the median average water stress and “Lowest” the block
group with the lowest average water stress. The vertical line indicates the date for which water
stress is shown for all block groups in Figure A1(b). The block groups with bold boundaries
correspond to the three block groups in Figure A1(a).
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B Demand Estimation Results

Main Specification

The results from estimating (1) are in Panel A of Table B1. For comparison, we also analyze

a model without any heterogeneous effects:

qit = βjpt +
∑
k

xitkφkj + Zitθj + ηi + εit. (2)

The results from estimating (2) are in Panel B in Table B1.

Table B1: Estimation results

Price Stage 1 Stage 2 Emerg. WS Temp.
Panel A: Main Results
Low wealth, light usage 0.0544 0.0028 -0.0645 -0.1418 0.0324 0.0132

(0.0304) (0.0078) (0.0149) (0.0128) (0.0030) (0.0067)
Low wealth, moderate usage -0.1476 -0.0339 -0.0605 -0.2089 0.0607 -0.0002

(0.0396) (0.0069) (0.0130) (0.0131) (0.0031) (0.0058)
Low wealth, heavy usage -0.3889 -0.0410 -0.0230 -0.1907 0.0836 -0.0244

(0.0597) (0.0201) (0.0304) (0.0345) (0.0096) (0.0142)

High wealth, light usage 0.0441 -0.0163 -0.0417 -0.1520 0.0411 0.0265
(0.0429) (0.0100) (0.0231) (0.0192) (0.0046) (0.0098)

High wealth, moderate usage -0.1172 -0.0171 -0.0444 -0.2348 0.0840 -0.0191
(0.0287) (0.0056) (0.0121) (0.0107) (0.0028) (0.0051)

High wealth, heavy usage -0.3560 -0.0151 -0.0234 -0.3796 0.1314 -0.0308
(0.0654) (0.0099) (0.0203) (0.0219) (0.0048) (0.0093)

Panel B: No Heterogeneity
All -0.1037 -0.0136 -0.0448 -0.2106 0.0689 -0.0026

(0.0260) (0.0033) (0.0067) (0.0063) (0.0016) (0.0030)
Note: The “Price” column contains price elasticity estimates. The “Stage 1,” “Stage 2,” and
“Emerg” columns contain responses to the three levels of CAC restrictions. The “WS” and
“Temp” columns contain responses to water stress and average temperature, respectively. In
addition to the variables displayed in this table, the model includes an indicator variable for the
seasonal pricing regime and interactions of usage type and wealth indicators with log(read days),
and a nonlinear intrayear time trend. The model also includes linear interyear time trends for
summer and non-summer usage, for which results are reported in the “Baseline” column of
Table B2. Standard errors, clustered at the household level, are in parentheses.
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In Appendix Figure B1, we display the estimated type-specific intrayear trends, which

we specify as a sixth-order polynomial for each type. As exected, the estimated intrayear

trends largely follow the temporal usage patterns in Figure 2.

Figure B1: Estimated Intrayear Time Trends

Notes: Solid lines are the mean values for each of the type-specific fitted polynomial functions.
The shading around the lines represent 95% confidence bands.
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We next assess our results’ sensitivity to different approaches to usage trends. In

addition to our main specification, we estimate several alternative specifications and report

the results in Table B2, where Panel A contains trend coefficients and Panel B contains price

elasticities. The “Baseline” column reports the interyear trend estimates from our main

specification and repeats the elasticity estimates from Table B1 Panel A. The “Two-Step”

column reports trend coefficients from a model that uses data prior to seasonal pricing (May

2002) and homogeneous coefficients for all households, as in equation (2). We use these

estimates to de-trend the usage data of the seasonal pricing regime, and we estimate an

adapted version of equation (1) to obtain elasticity estimates. The intuition behind the two-

step model is that the pre-seasonal pricing portion of the sample period should pin-down

the interyear usage trends, and by restricting the data to this period we avoid confounding

the trends with other sources of temporal variation during the seasonal pricing regime. In

the remaining columns of Table B2, we explore specifications that allow usage trends to vary

with permanent household characteristics that could be correlated with water demand. The

“Wealth” column allows for separate interyear summer and non-summer trends for high- and

low-wealth households within equation (1). The “Lot Size” column estimates separate trends

for households above and below the OWASA median lot size. The “Wealth × Lot” column

estimates separate trends for each combination of wealth and lot size indicators. In all cases,

the elasticity estimates in Table B2 Panel B are qualitatively the same as our Baseline results.

The “Two-Step” elasticities are more negative than the Baseline results but retain the same

ordering across usage types while being invariant to wealth. The remaining elasticity results,

using combinations of wealth and lot size, are quantitatively nearly identical to the Baseline

results.
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Table B2: Estimation results

Baseline Two-Step Alternative Specifications
Panel A: Trend coefficients
Year trend -0.0411 -0.0351 -0.0377 -0.0369 -0.0372

(0.0015) (0.0018) (0.0020) (0.0019) (0.0024)
Summer trend 0.0002 0.0000 -0.0063 -0.0023 -0.0027

(0.0021) (0.0026) (0.0023) (0.0021) (0.0028)
Year trend, high wealth . . -0.0026 . 0.0009

. . (0.0028) . (0.0032)
Summer trend, high wealth . . 0.0051 . 0.0004

. . (0.0041) . (0.0042)
Year trend, large lot . . . -0.0086 -0.0015

. . . (0.0023) (0.0035)
Summer trend, large lot . . . 0.0060 -0.0112

. . . (0.0015) (0.0046)
Year trend, high wealth, large lot . . . . 0.0021

. . . . (0.0022)
Summer trend, high wealth, large lot . . . . 0.0058

. . . . (0.0030)
Seasonal pricing regime 0.0081 -0.0119 0.0080 0.0085 0.0083

(0.0048) (0.0041) (0.0048) (0.0048) (0.0048)

Panel B: Price elasticities
Low wealth, light usage 0.0544 0.0521 0.0600 0.0449 0.0503

(0.0304) (0.0222) (0.0348) (0.0303) (0.0351)
Low wealth, moderate usage -0.1476 -0.1501 -0.1422 -0.1564 -0.1516

(0.0396) (0.0293) (0.0457) (0.0395) (0.0461)
Low wealth, heavy usage -0.3889 -0.3913 -0.3838 -0.3976 -0.3935

(0.0597) (0.0559) (0.0616) (0.0599) (0.0621)

High wealth, light usage 0.0441 0.0414 0.0396 0.0368 0.0370
(0.0429) (0.0363) (0.0490) (0.0431) (0.0492)

High wealth, moderate usage -0.1172 -0.1201 -0.1213 -0.1243 -0.1233
(0.0287) (0.0188) (0.0368) (0.0292) (0.0371)

High wealth, heavy usage -0.3560 -0.3592 -0.3602 -0.3627 -0.3603
(0.0654) (0.0536) (0.0768) (0.0664) (0.0773)

Notes: The “Baseline” column matches the specification in Table B1 Panel A. The “Wealth,”
“Lot Size,” and “Wealth × Lot” specifications are identical to “Baseline” with the exception of
the interyear trend variables with coefficients reported in Panel A. Standard errors, clustered at
the household level, are in parentheses. The “Two Step” column’s trend coefficients are estimated
using data pre-dating seasonal pricing, and we use these estimates to de-trend the usage data and
obtain the Panel B estimates in a model identical to the “Baseline” specification. Standard errors
are calculated using a bootstrapping procedure to account for sampling error.

33



Additional Alternative Specifications

In this section, we analyze our data using other approaches to understand how our estimates

may change if we do not exploit several of the salient characteristics of our methodology.

First, we use water stress in our main specification to represent environmental factors. Al-

ternatively, one could use the well-known Palmer Drought Severity Index (PDSI, Palmer

(1965)) instead. Though the two indexes are correlated, there are two theoretical reasons to

prefer water stress. First, water stress is constructed from a spatially distributed hydrolog-

ical model that takes into account plant physiology and hydrological response to estimate

the ET and PET at 30 m resolution in an urbanized region over time. The RHESSys model

itself has already incorporated the climate inputs to simulate infiltration, soil water drainage,

capillary rise, field capacity, soil water lateral water transport, and runoff in the urbanized

catchment parameterized by the EPA 1m Enviroatlas (Pickard et al., 2015). Second, the pur-

pose of our water stress index is not to explicitly model drought, where drought is defined

as a prolonged and abnormal moisture deficiency. This type of moisture deficiency is not

characteristic of North Carolina where rainfall levels are generally high and water moisture

is higher relative to Kansas and other locations for which the PDSI was primarily designed.

Dry conditions in our setting represent moisture deficiencies that can be interpreted as urban

lawn and garden signals which may prompt irrigation. Our index, therefore, is meant as an

irrigation signal and not a drought signal. Specifically, the value of our index is designed

to capture the water deficiency (i.e. water stress) that vegetation in an area would expe-

rience in the absence of irrigation. Note also that the PDSI is defined spatially according

to “climate divisions.” There are 8 in the entire state of NC, and all of OWASA’s service

area is in one climate division. Thus water stress is much more spatially distinct. All of this

notwithstanding, we estimate a model using PDSI instead of our measure of water stress as

an additional robustness check. The results are presented in the “PDSI” column in Table B3

and are fairly similar in magnitude to our main results. Though the impact of using PDSI

and our water stress measure are similar, water stress is the more appropriate measure as

it is a direct attempt at modeling moisture available to lawns using highly detailed spatial

information.
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Second, we replace our machine learning algorithm with a simple procedure to as-

sign usage groups. In particular, we separated households into terciles based on their total

year-round usage prior to seasonal pricing. We refer to this classification approach as “Ter-

cilesA” in Table B3. We also separated households into terciles based on their total usage

during summer months; this classification is “TercilesS.” These alternative approaches have

the advantage of being simpler than our machine learning approach, but they set ex-ante

constraints on the shares of households that will be classified as having high, medium, and

low usage. By comparison, using our preferred approach, we place only 15% of households

in the heavy-usage category. We obtain results that are qualitatively similar to our main

results. Heavy-usage households have the greatest price sensitivity, followed by medium-

usage households, and low-usage households show little or no significant response to price

variation.

Third, we estimate our main model using unbalanced panel data, where we ease the

requirement that households are present in all years of the sample period. In this setup, we

require customers to be present in the sample’s first two years, but we place no restriction

on whether customers remain until the end of the sample period. This increases the sample

size to 5824 households. The results, which we display in Table B3’s “Unbalanced” column,

are very similar to those from our main specification.

Fourth, our main estimating equation allows for heterogeneous effects of controls

across groups through the φ and θ parameters in (1). In Table B4 we consider various

restrictions imposed on this model. The column labelled “Main” reproduces our main results

from Table B1. In column A, we place restrictions on φ and θ so these coefficients do not

vary across groups. The results are strikingly different. In particular, the elasticities for

high wealth groups are essentially reversed. In columns B and C, we keep the same φ and θ

restrictions of column A in place and estimate the wealth and usage effects separately of each

other. Again we see quite different results from our main specification. These alternative

specifications support our argument that a potential reason for the differences between our

results and those in the previous literature may be due to our treatment of heterogeneity.
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Table B3: Price Elasticities Under Alternative Specifications

Main PDSI TercilesA TercilesS Unbalanced
Low wealth, light usage 0.0544 0.0505 0.0493 0.0765 0.0686

(0.03040) (0.02960) (0.03040) (0.03020) (0.02950)
Low wealth, moderate usage -0.1476 -0.1399 -0.1206 -0.0870 -0.1345

(0.03960) (0.03850) (0.03740) (0.04210) (0.03160)
Low wealth, heavy usage -0.3889 -0.3684 -0.2667 -0.3889 -0.3717

(0.05970) (0.05630) (0.05800) (0.04350) (0.05180)
High wealth, light usage 0.0441 0.0471 0.0180 0.0701 0.0964

(0.04290) (0.04150) (0.04350) (0.04170) (0.04590)
High wealth, moderate usage -0.1172 -0.1032 -0.0584 -0.0280 -0.1585

(0.02870) (0.02780) (0.03130) (0.03000) (0.02620)
High wealth, heavy usage -0.3560 -0.3199 -0.2706 -0.3391 -0.3324

(0.06540) (0.06300) (0.04360) (0.04640) (0.05250)
Note: Column contain price elasticity estimates. Models also include CAC restrictions, linear
interyear time trends for summer and non-summer usage, an indicator variable for the seasonal
pricing regime and interactions of usage type and wealth indicators with: water stress,
temperature, log(read days), and a nonlinear intrayear time trend. Standard errors, clustered at
the household level, are in parentheses.
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Table B4: Price Elasticities Under Alternative Heterogeneity Approaches

Main A B C
Low Wealth . . -0.1752 .

. . (0.0287) .
High Wealth . . -0.0094 .

. . (0.0296) .
Light Usage . . . -0.1555

. . . (0.0287)
Moderate Usage . . . -0.1252

. . . (0.0283)
High Usage . . . 0.1077

. . . (0.0487)
Low wealth, light usage 0.0544 -0.1425 . .

(0.0304) (0.0298) . .
Low wealth, moderate usage -0.1476 -0.2028 . .

(0.0396) (0.0358) . .
Low wealth, heavy usage -0.3889 -0.2207 . .

(0.0597) (0.0599) . .
High wealth, light usage 0.0441 -0.1509 . .

(0.0429) (0.0394) . .
High wealth, moderate usage -0.1172 -0.0508 . .

(0.0287) (0.0289) . .
High wealth, heavy usage -0.3560 0.2431 . .

(0.0654) (0.0579) . .
Note: Column contain price elasticity estimates. In column A, controls are not allowed to vary
across groups. In columns B and C, we estimate the wealth and usage effects separately of each
other. Models also include CAC restrictions, linear interyear time trends for summer and
non-summer usage, an indicator variable for the seasonal pricing regime and interactions of usage
type and wealth indicators with: water stress, temperature, log(read days), and a nonlinear
intrayear time trend. Standard errors, clustered at the household level, are in parentheses.
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